University of Colombo, Sri Lanka

UCSC University of Colombo School of Computing

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY

(EXTERNAL)

Fourth Semester Examination - 2025

IT4406 — Agile Software Development

One (1) Hour
Answer All Questions

To be completed by the candidate

Index Number

Important Instructions to candidates:

Please ensure that you have the correct examination paper in front of
you.

Students should answer in the medium of English language only using
the space provided in this question paper.

Note that questions appear on both sides of the paper. If a page or a
part of this question paper is not printed, please inform the supervisor
immediately.

Clearly write your index number on each page of this Question paper.
This paper consists of 2 questions in 8 pages (including the Cover Page).
The duration of the paper is One Hour.

Answer ALL questions.

Do not tear off any part of this answer book. Under no circumstances
may this book (or any part of this book), used or unused, be removed
from the Examination Hall by a candidate.

Programmable or Non-Programmable Calculators and any electronic
device capable of storing and retrieving text, including electronic dic-
tionaries, smart watches and mobile phones, are not allowed.

To be completed by
the examiners

Total




Index Number

1. A development team notices that at the end of each iteration, a significant number of bugs and
integration issues emerge. Testing activities are typically postponed until the final stages of de-
velopment, and code contributions from different team members frequently result in integration
failures.

(a). List down three specific practices or processes based on (or influenced by) Extreme Pro-
gramming (XP) that could help address these issues.

[3x2: 6 marks]

[Question 1 is based on 1. Introduction to Agile Software Development, 8. Introduction to
Testing in SCRUM (e.g., TDD, CI), 9. Extreme Programming (XP) sections of the syllabus.
The focus is on the application of concepts from these sections for solving the noted problems.]

* Test-Driven Development (TDD) — Writing tests before code implementation so that de-
velopment is guided by testing criteria.

* Continuous Integration (CI) — Frequently merging code changes into a shared repository
and running automated tests on each integration.

* Pair Programming — Two developers working together at one workstation to co-author
code in real time.

Naming the practice and/or a brief explanation of the practice or process is sufficient.

(b). For each recommended practice or process in (1a), explain how it helps address the noted
problems. Include concrete examples and expected outcomes.

[3x4: 12 marks]

* TDD: By writing unit tests early and continuously, developers get immediate feedback
on whether new code meets requirements. This practice ensures high unit-test coverage
and catches bugs at the moment of coding (not weeks later). For example, if a function
is developed with TDD, any logic error is caught by a failing test right away, preventing
that bug from ever reaching integration.

* CI: CI addresses integration issues by merging code from all team members frequently
(at least daily or for every commit) and running an automated build and test suite
each time. This means integration conflicts or incompatible changes are identified
immediately when a change is introduced.




Index Number

* Pair Programming: Having two programmers collaborate on the same code simultane-
ously means real-time code review and knowledge sharing. Many mistakes or bad design
choices are caught as the code is being written, rather than during a later integration or
testing phase.

The answers to this question will be based on your answers in la.

(c). Identify and explain three indicators or metrics a team could use to assess whether newly
introduced XP processes or practices are addressing problems such as frequent bugs and poor
integration. Note: For this question, you can use your answers in (la) or choose any other
XP process or practice.

[3x3: 9 marks]

* Defect density: Track the number of bugs found at the end of each iteration (or the num-
ber of production defects reported). A downward trend in bugs reported (or a lower defect
density in the code) after adopting CI/TDD/pair programming would indicate improved
code quality.

* Build success rate: Measure the frequency of broken builds or failed integrations. A
healthy trend would be that build failures become rare and the integration success rate
goes up after adopting the XP processes or practices.

* Lead time for changes: Measure the time from code commit to successful deployment or
integration. A reduction after Agile/XP adoption indicates faster and smoother integra-
tion.




Index Number

(d). Identify and explain two challenges a team might face when transitioning from a traditional
(e.g., waterfall) based environment to working with XP practices or processes.

[2x4: 8 marks]

* Cultural and Mindset Resistance: Team members may resist the change in mindset that
Agile/XP requires. In a waterfall environment, people are used to upfront planning,
separate tester/developer roles, and individual code ownership. Switching to Agile/XP
means embracing collective code ownership, constant collaboration (pairing), and
incremental planning. Some members might find it uncomfortable at first.

 Skill and Process Adaptation Challenges: Adopting practices like TDD and CI can ini-
tially slow the team down if they lack the knowledge. Teams coming from a waterfall
setting may also lack automated testing skills or continuous integration tools/infrastruc-
ture.

(e). Consider the paradigm shift proposed in the Agile Manifesto. Using these principles or val-
ues, explain how the noted problems in (1d) can be addressed using three specific examples.

[3x5: 15 marks]

* Individuals and interactions over processes and tools
To reduce cultural resistance, emphasise teamwork and communication as values. Exam-
ple: Instead of imposing pair programming as a rigid process, hold a team retrospective
to discuss it openly (a practice aligning with individuals and interactions). Let develop-
ers share their concerns and demonstrate the benefits in a friendly way. Pair junior team
members with more experienced agile-focused members.

» Working software over comprehensive documentation
To ease skill and process adaptation challenges, show how practices like TDD and CI
help maintain working software continuously. Instead of requiring extensive design
specs, encourage writing small, testable increments of code. This reduces pressure and
helps teams gradually become proficient in automated testing, as they get fast feedback
and build confidence with each successful test run.




Index Number

* Responding to change over following a plan
Both challenges (cultural resistance and skill gaps) are intensified by rigid plans. Em-
phasising adaptability allows the team to incrementally adopt XP practices. For example,
the team might start with simple CI scripts and basic unit tests rather than a full CI/CD
pipeline from day one. Adopting practices iteratively based on feedback reduces fear and
failure risk.

2. A Scrum team is working on a high-priority project that spans multiple sprints. The team is
preparing for its next release and wants to ensure that its planning and sprint execution align with
Agile values.

(a). Identify three core planning principles in Scrum that contrast with traditional project plan-
ning. Briefly explain how each principle can help the team described above reduce waste or
increase responsiveness.

[3 x 3 =9 marks]

This question is based on 6. Scrum Planning and 7. Sprints sections of the syllabus.

* Defer decisions until the last responsible moment.
Hold off on making detailed decisions until you actually have the best possible informa-
tion. This means that you only detail the requirements when they are about to be worked
on. This greatly reduces waste as you’re not documenting or analysing features that might
be cut or changed later. It also increases responsiveness by keeping options open. Here,
the team can incorporate late-breaking changes or new ideas without the pain of undoing
months of plans.

» Favour smaller, more frequent releases.
Facilitates quicker feedback and adaptability, reducing risk from large batch releases.
Compared to a traditional plan with a single delivery, small releases reduce waste by
shortening the feedback cycle. The team and stakeholders can inspect a working product
increment early and often. This prevents building large batches of features that turn out
to be misaligned with user needs.

* Plan to learn fast and pivot when necessary or Plan adaptively, not predictively..
This encourages experimentation and adapting plans based on insights from working
increments, resulting in increased responsiveness.




Index Number

(b). The team is planning its next release. The Product Owner suggests using a fixed-date release
approach.

1. Outline four key steps involved in performing fixed-date release planning.
[12 marks]

* Determine the number of sprints for the release.
* Groom backlog and estimate items.

* Measure or estimate the team’s velocity. (range).

Multiply velocity by the number of sprints to estimate feature delivery.

ii. How does a fixed-date release approach help the team forecast “will-have” and “might-
have” features?

[6 marks]

* A fixed-date release plan provides a transparent method to forecast scope under a non-
negotiable timeline by using the team’s known throughput. By fixing the date and vary-
ing scope, the team uses its velocity range to set expectations about what will definitely
be done versus what might be done by that date. This helps stakeholders set realistic
expectations.




Index Number

(c). The company also wants to ensure that the overall product strategy is aligned with business
value delivery.

i. What is the purpose of Portfolio Planning in Scrum?
[3 marks]

* To prioritise and align development across multiple products with strategic business goals.

* In practice, the purpose is to decide which initiatives (products, projects) to start or con-
tinue, in what order, and for how long, so that the company’s limited resources yield the
maximum business benefit.

ii. Name and describe two inflow or outflow strategies (one each) used in Portfolio Plan-
ning.

[8 marks]

* Inflow — Apply Economic Filter: Prioritize high-value items and eliminate low ROI ini-
tiatives. [Other answers: Balance the Arrival Rate with the Departure Rate. Quickly
Embrace Emergent Opportunities. Plan for Smaller, More Frequent Releases]

* Outflow — Establish WIP (Work in Progress) Limit: Prevent team overload and improve
delivery throughput by limiting active work. [Other answers: Focus on idle work, not idle
workers. Wait for a complete team. ]




Index Number

(d). A retrospective revealed that during sprint execution, progress tracking was inconsistent.
Name two visual tools that teams can use during sprints to communicate and manage work
progress. Using clear examples, explain how each tool contributes to better sprint outcomes
(i.e., highlight the impact).

[12 marks]

* Task Board: A visual board (physical or digital) that categorizes tasks into columns such
as ”To Do”, ”’In Progress”, and "Done”. It provides real-time visibility into the state of
each task.

Example: During a sprint, the team notices that many tasks are stuck in ”In Progress”.
This can trigger a discussion in the daily Scrum to reallocate resources and remove
bottlenecks.

Impact: Enhances transparency and accountability, allows quick adjustments during
execution, and supports daily inspection and adaptation.

» Sprint Burndown Chart: A graph showing the remaining effort (e.g., story points or
hours) on the Y-axis versus time (e.g., days of the sprint) on the X-axis. It visually de-
picts whether the team is on track to complete the planned work.

Example: On Day 7 of a 10-day sprint, the chart shows a flat line, indicating no recent
progress. This insight can trigger a mid-sprint review and reprioritisation of work.
Impact: Helps teams detect early deviations from the plan, facilitates data-driven discus-
sions, and encourages timely corrective actions.

> sk s st s ke s ke sk sk sk sk sk sk sk sk skoske sk




