IndeXNOccevtnenn

1))

(a) | List three (03) benefits of using a layered network model in a typical protocol stack.

(6 marks)

ANSWER IN THIS BOX

Facilitates troubleshooting
Breaks complex networking into manageable layers

Allows interoperability between layers developed by different vendors.

=>» 2 mark for benefit

(b) | Explain the difference between fault-tolerance and fault-resilience in distributed computing.

(4 marks)

ANSWER IN THIS BOX

Fault-Tolerance: The system continues to operate correctly even when faults occur.
Fault-Resilience: The system recovers quickly from faults.

©

(d)

IndeXNO c.vviiiiiiiiii

In which ways can a distributed system be considered less advantageous than a centralised system in
relation to complexity in design and maintenance?

(5 marks)

ANSWER IN THIS BOX

Distributed systems are inherently more complex to design, implement, and maintain due to the
need for coordination among multiple nodes.
Centralized systems are simpler, with a single point of control and easier management.

List and briefly explain three types of system failure models.

(6 marks)

ANSWER IN THIS BOX

Halting Failures: Process stops without incorrect actions.

Send-Omission Failures: Messages are not sent when they should be.

Byzantine Failures: Arbitrary or malicious behavior, such as sending incorrect or inconsistent
messages.

(e)

2)
(a)

IndeXNO c.vviiiiiiiiiiies

List four (04) characteristic features of a distributed system.
(4 marks)

ANSWER IN THIS BOX

Multiple autonomous hosts

Components that interact and request services from each other
Middleware to manage communication and resolve heterogeneity
Perception of a single, integrated system to the user

Define the term middleware and explain its purpose.
(5 marks)

ANSWER IN THIS BOX

Middleware is software that facilitates communication and data management for
distributed applications. It connects:

e Presentation and application layers

e Application to application layers

e tis essential for building scalable, distributed systems.

(b)

(c)

Index No

Can middleware be used in non-distributed systems? Explain.

(4 marks)

ANSWER IN THIS BOX

— Yes. Middleware can be used on a single machine for:

Testing distributed features
Building applications that may be distributed in the future

Distinguish between an operating system and middleware in three (03) aspects.

(4 marks)

ANSWER IN THIS BOX

Operating System (OS): Provides core kernel-level functionality.
Middleware: Offers domain-specific features and sits between the OS and application layer.
Some middleware functions (e.g., TCP/IP stack) are now integrated into modern OSs.

(d)

(e)

IndexXNOcoevvnnnnnn.

Explain the use and operation of Object-Oriented Middleware.

(5 marks)

ANSWER IN THIS BOX

Object-oriented middleware supports distributed object requests. It allows a client object to make
a logical method call to a remote object, enabling interaction across distributed systems.

Explain the functionality of the code below.

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;
import java.util.HashMap;

import java.util.Map;

(7 marks)

public class StudentImpl extends UnicastRemoteObject implements Student {

private Map<Integer, String> studentData;

protected StudentImpl () throws RemoteException {
super () ;

studentData = new HashMap<>();

studentData.put(l, "John Doe, Age: 21, Course: Computer Science");

studentData.put (2, "Jane Smith, Age: 22, Course: Mathematics");

@Override
public String getStudentDetails(int id) throws RemoteException {
return studentData.getOrDefault(id, "Student not found.");

QOverride

public String addStudent(int id, String details) throws RemoteException {

if (studentData.containsKey(id)) {
return "Student ID already exists!";

}
studentData.put(id, details);

(@

return "Student added successfully.";

Index No

ANSWER IN THIS BOX

Retrieve student details by ID.
Add new student records to the system.

over a network using Java RMI.

The class Studentlmpl is a remote object that implements the Student interface (not shown here,
but assumed to define the methods getStudentDetails and addStudent). It allows clients to:

This is part of a distributed application where clients can invoke methods on this object remotely

What are the eight (08) elements of middleware?

(08 marks)

ANSWER IN THIS BOX

Communication Link

Protocols (Network and Middleware)
Programmatic Interface

Common Data Format

Server Process Control

Naming and Directory Services
Security

Systems Management

(b)

(©

IndeXNO c.vviiiiiiiiiiies

What is meant by marshalling in Remote procedure call (RPC)?
(4 marks)

ANSWER IN THIS BOX

Marshalling is the process of converting parameters into a message format suitable for

transmission over a network. It ensures compatibility between different machine architectures
(e.g., little-endian vs. big-endian).

What is serialization and how is it related to marshalling?
(4 marks)

ANSWER IN THIS BOX

Serialization is the process of converting an object into a message for storage or transmission. It
is a broader concept that includes marshalling, especially in object-oriented systems.

(d)

©)

(@

Index No

List four (04) weaknesses of RPC.

(4 marks)

ANSWER IN THIS BOX

Lack of multithreading (client blocks during call)

Server needs multiple threads to handle clients
Synchronization issues with shared resources

Non-atomic failures in distributed systems

Performance overhead compared to local calls

Difficult debugging and testing in multithreaded environments

Define a Message Broker in the context of middleware architectures.

(5 marks)

ANSWER IN THIS BOX

middleware and helps decouple applications.

A message broker is an intermediary software module that translates messages between different
messaging protocols used by the sender and receiver. It is a key component in message-oriented

What are the consequences of not having IDL in message queueing (message oriented middleware)?

(5 marks)

ANSWER IN THIS BOX

(b)

©

Index No

Message queueing lacks an Interface Definition Language (IDL), so there is no automatic
marshalling. Developers must ensure both sender and receiver understand the message format,
often requiring special formatting tools.

Identify the most suitable HTTP verb to be used in each of the following RESTful URIs.

(5 marks)

ANSWER IN THIS BOX

URI HTTP Method
/coffeOrder/{id} GET
/coffeOrder/add POST
/coffeOrder/delete/{id} DELETE
/coffeOrder/getAll GET
/coffeOrder/update/{id} PUT

The following piece of code was taken from a Controller class in a Restful backend

application.

Explain The functionality of the code given below.

package com.example.coffeeapp.controller;

import com.example.coffeeapp.model.CoffeeOrder;

(10 marks)

10

IndeXNO c.vviiiiiiiiii

import com.example.coffeeapp.service.CoffeeOrderService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController

@RequestMapping ("/api/orders")

public class CoffeeOrderController {

@Autowired

private CoffeeOrderService coffeeOrderService;

QPostMapping
public ResponseEntity<CoffeeOrder> createOrder (@RequestBody CoffeeOrder
order) {

CoffeeOrder createdOrder = coffeeOrderService.createOrder (order) ;

return ResponseEntity.ok (createdOrder) ;

@GetMapping
public ResponseEntity<List<CoffeeOrder>> getAllOrders () {

return ResponseEntity.ok (coffeeOrderService.getAllOrders());

@GetMapping ("/{id}")

public ResponseEntity<CoffeeOrder> getOrderById(@PathVariable Long id) {
CoffeeOrder order = coffeeOrderService.getOrderById(id) ;
return order = null ? ResponseEntity. ok (order)

ResponseEntity.notFound() .build() ;
}

@PutMapping ("/{id}")
public ResponseEntity<CoffeeOrder> updateOrder (QPathVariable Long id,
@QRequestBody CoffeeOrder updatedOrder) ({
CoffeeOrder order = coffeeOrderService.updateOrder (id, updatedOrder) ;
return order = null ? ResponseEntity. ok (order)

ResponseEntity.notFound () .build() ;
}

11

(d)

IndeXNO c.vviiiiiiiiiiies

@DeleteMapping ("/{id}")
public ResponseEntity<Void> deleteOrder (@PathVariable Long id) {
boolean deleted = coffeeOrderService.deleteOrder (id) ;
return deleted ? ResponseEntity.noContent () .build()
ResponseEntity.notFound () .build() ;
}

ANSWER IN THIS BOX

The CoffeeOrderController class is a RESTful controller in a Spring Boot application that
manages coffee orders. It defines endpoints for creating (POST), retrieving (GET), updating
(PUT), and deleting (DELETE) coffee orders. The controller uses CoffeeOrderService to handle
business logic. Each method maps to a specific HTTP request and returns a ResponseEntity with
appropriate status codes and data. The controller supports operations like fetching all orders,
retrieving an order by ID, updating an existing order, and deleting an order. It uses annotations
like @RestController, @RequestMapping, and @Autowired to integrate with Spring’s
dependency injection and routing mechanisms.

The following service call was found in a piece of code in a Controller class of a Restful backend
application.

Order order = orderService.findOrderById (orderId) ;

Briefly explain the expected functionality of the above service call.

(5 marks)

ANSWER IN THIS BOX

12

IndeXNO c.vviiiiiiiiiiies

Service classes implements the business logic (methods to create, retrieve, and manipulate data)
for a particular entity. Here the route service.findOrderByld method will output a order object
after searching for a order using a orderID.

kkkkd

13

